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1. Introduction

The model problem of a single droplet sheared between
parallel walls is of interest in the processing of dilute sus-
pensions for which coalescence is negligible, and equilib-
rium drop sizes are determined at breakup (Bigio et al.,
1998; Scardovelli and Zaleski, 1999; Paul et al., 2003;
Fischer and Erni, 2007). Drop deformation under shear
in Stokes flow has recently been simulated with a number
of methods: the boundary integral method (Cristini et al.,
1998, 2003; Bazhlekov et al., 2006), spectral algorithms
(Yechun and Dimitrakopoulos, 2006; Dimitrakopoulos,
2007), front-tracking methods (Popinet and Zaleski, 1999;
Aggarwal and Sarkar, 2007; Muradoglu and Tryggvason,
2008), the level set method (Pillapakkam and Singh,
2001), finite element method (Hooper et al., 2001), diffuse
interface method (Yue et al., 2005), and the volume-of-fluid
method (Lafaurie et al., 1994; Li et al., 2000; Renardy and
Renardy, 2002). In addition, the latter method has been
used to examine the first effects of inertia (Renardy et al.,
2002), and this paper focusses on this regime. It is well
known that the uniqueness associated with Stokes flow is
lost when inertia is included. In particular, an analysis of
the initial overshoot, and its extent associated with initial
conditions, is examined.
2. Formulation

The two liquids are governed by the Navier–Stokes
equations and incompressibility. At the interface between
the drop and the surrounding liquid, the jump in the nor-
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mal stress is balanced by surface tension, and velocity
and shear stress are continuous. At the top and bottom
boundaries, the walls move to provide shear. Spatial peri-
odicity is assumed in the horizontal x and y directions.
The domain (see Fig. 1) is taken sufficiently large so that
neighboring drop interactions are minimal.

In Stokes flow, the viscous force in the surrounding
liquid deforms the drop while the capillary force stabilizes
it. These competing forces are expressed by the capillary
number Ca ¼ lm _ca=r, where a denotes the initial radius
of the drop, _c is the shear rate, lm the viscosity of the sur-
rounding liquid, and r the interfacial tension parameter.
The relative importance of inertial to viscous effects is
expressed by the Reynolds number, Re ¼ qm _ca2=lm, where
qm denotes the density of the surrounding liquid. The drop
and matrix liquids are assumed to have equal densities to
avoid buoyancy effects, and may have different viscosities
ld and lm. The drop to matrix viscosity ratio is denoted
k ¼ ld=lm. In the following, t denotes the dimensionless
time with respect to the shear rate _c.

The Grace curve (Grace, 1982; Stegeman et al., 2002) is
an experimentally determined curve for Stokes flow that
gives the relation between the critical capillary number
(below which the drop reaches stationary state and above
which the drop breaks up) and the viscosity ratio for the
breakup of an initially spherical droplet. This curve is
often used to find an optimal flow rate in industrial mix-
ers. Given the droplet size, the curve can be used to find
the shear rate that is needed. Data for this are obtained
by increasing the flow rate until drop breakup is observed
(Guido and Villone, 1998; Guido and Greco, 2001). To
obtain the Grace curve numerically, the viscosity ratio is
prescribed and the capillary number is increased until
breakup occurs. Cristini et al. (2003) shows that the crit-
ical capillary number approaches infinity at k ¼ 0 and
k > k� � 3. For viscosity ratios greater than k�, the
drop evolves to a steady shape for all capillary numbers.
On the other hand, inertia increases the suction provided

mailto:renardyy@aol.com
http://www.math.vt.edu/people/renardyy


Z

0

1

0

1 X

0

1

2

Fig. 1. Initial configuration for direct numerical simulation.
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by the pressures generated near the drop tips, thus tilting
the drop further (de Bruijn, 1989; Guido and Greco,
2001). The addition of inertia shifts the value of k� to
above 3; thus, drops can be broken for a wider range of
viscosity ratios (Khismatullin et al., 2003). Theoretical
results on the effect of inertia on criticalities are few com-
pared with those on Stokes flow (Stone, 1994; Sheth and
Pozrikidis, 1995; Renardy and Cristini, 2001a; Renardy
et al., 2002; Renardy and Cristini, 2001b; Khismatullin
et al., 2003). The goal of this brief communication is to
illustrate a capillary number at which the drop breaks
for the abrupt initial condition but does not for a gentle
initial condition.
3. Numerical results

Direct numerical simulations are performed with a three-
dimensional transient volume-of-fluid (VOF) continuum
surface force (CSF) method. The spatial discretization is a
regular Cartesian mesh. The location of the two liquids are
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Fig. 2. Sideview deformation and orientation.
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Fig. 3. Re ¼ 10;Ca ¼ 0:15. Velocity vector plot in the x–z cross-section thro
motion from zero flow, t ¼ 2; (b) the drop is initially placed in an establishe
defined by a color function per mesh cell, equal to the volume
fraction of the drop liquid. This function is advected with the
flow in a Lagrangian manner. The discretized velocity and
pressure are staggered. The color function is discretized at
the same location as pressure. Time integration is semi-impli-
cit, with an operator factorization. The interface location is
reconstructed from the color function with the piecewise lin-
ear interface construction scheme (PLIC). Implementation
and tests are detailed in Li et al. (2000), Renardy et al.,
2002, in which the initial condition is a spherical drop placed
in an established background shear. On the other hand, com-
parison with experimental data begin with a drop in a paral-
lel plate device from rest. This raises the question of the
influence of initial conditions on the critical curve for
breakup in the presence of inertia.

The computational domain is the rectangular box of
Fig. 1; it is bounded above and below by plates that move
to generate a shear rate _c in the bulk of the outer liquid,
with the plate separation 8a to eliminate wall effects. Peri-
odic boundary conditions apply in the horizontal x and y

directions, also at least 8a apart to prevent neighboring
drop interactions for the parameters below. Fig. 2 shows
the definition of the Taylor deformation D in terms of
the half-length L and half-breadth B, both dimensionless
with respect to the drop radius a. The drop is observed
from the side, i.e., projected to the x� z plane.

A gentle startup condition is a spherical drop placed in a
flow at rest after which the walls move to start the shear, as
in Fig. 3(a). This shows the velocity of the walls penetrating
into the bulk of the fluid in finite time. In the figure, the vis-
cous shear is yet to arrive at the drop. An abrupt startup
condition is a drop placed in an established shear flow as
in Fig. 3(b). Stokes flow is not sensitive to the difference
between figures (a) and (b) because of the instantaneous
smoothing of data for elliptic PDEs; the motion of the
walls is instantly felt through the whole domain. Inertia
prevents this and when the walls begin to move, wall shear
takes time to propagate to the drop.

In what follows, the case of viscosity ratio 1 is
addressed, at a shear rate that yields Re ¼ 10, and con-
sider three separate ways to achieve this. One case is ini-
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d shear flow t ¼ 0.
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tially zero velocity after which the plates move at the shear
rate that corresponds to Re ¼ 10, as in Fig. 3(a). This is
the most physically realizable case of the three initial con-
ditions. The second case is initially uniform shear with the
plate speeds producing Re ¼ 10 as in Fig. 3(b). Under
experimental conditions, it is usually not possible to place
a spherical drop in an established shear flow. The third case
is to start at uniform shear at a low Reynolds number such
as Re ¼ 2, also as in Fig. 3(b), let the drop reach a steady
state shape, and increase the plate speeds in steps
ðRe ¼ 2; 4; 6; 8; 10Þ every time a stationary shape is
achieved until the plate speeds match Re ¼ 10. Sideview
drop deformation is examined; that is, in the x–z cross-sec-
tion through the center of the drop. The center of the drop
and the interface node farthest away are used to define the
half-length L. The distance from the closest interface node
to the center of the drop defines a half-breadth B. The half-
length vector subtends an angle of orientation h with the
x-direction.

Fig. 4 shows the evolution of the half-breadth B and
angle of tilt h to the direction of flow, vs. dimensionless
time. Oscillations are clearly seen here for the case of an
abrupt start at Re ¼ 10 (-.-). This begins with a spherical
drop in established shear, an initial condition which is typ-
ically used for modeling Stokes flow in an unbounded
domain. Under experimental conditions, it is not feasible
to place a spherical drop in established shear. The oscilla-
tions, or wobbling, are not observed in the angle of tilt.
The bold line in Fig. 4 (—) starts with the spherical drop
placed in established shear at the lower shear rate
Re ¼ 2. There is an oscillation here which is smaller in
magnitude, as it is lower in inertia. The dashed line shows
the mildest distortion; this models a parallel plate device
with a drop in zero flow followed by impulsively started
walls at the shear rate for Re ¼ 10. The wild variation in
h here up to t ¼ 4 is numerical error, due to the almost
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Fig. 4. Initial transients for half-breadth B vs t, angle h vs t for three cases;
initial drop in established shear at Re ¼ 2;Ca ¼ 0:031 (—); at
Re ¼ 10;Ca ¼ 0:15 (-.-.) shown with sideview drop shapes; initial drop
in zero flow followed by wall motion at Re ¼ 10 (- - -) shown with drop
shape at maximal extension.
spherical drop, and therefore the angle being essentially
indefinite. Once the drop is no longer spherical, the
interface node farthest from the drop center is well-defined
in the simulations. A typical discretization for Re ¼
10;Ca ¼ 0:15 with initially zero flow is a spatial mesh
Dx ¼ Dy ¼ Dz ¼ a=12, time step Dt _c ¼ 0:0005, and a
computational domain of 16a � 8a � 8a.

Fig. 5 shows drop shapes and evolution of the sideview
half-length ðLÞ corresponding to Fig. 4. The abrupt start at
Re ¼ 10 (-.-) has the overshoot which takes the drop to a
significant enough deformation that it breaks. The gentle
start for Re ¼ 10 (- - -) avoids the overshoot, and allows
the drop to reach stationary state. The case Re ¼ 2 (—)
for a drop placed in shear has an overshoot which is not
high enough to cause breakup. This case can be used to
ramp up to Re ¼ 10 without breakup.

Figs. 6 and 7 show the subsequent evolution over a suf-
ficiently large interval of time until either breakup or sta-
tionary state is achieved. Fig. 6 shows the deformation D

and angle h of the major axis in the x–z cross-section of
the drop. The case of the initially established shear at
Re ¼ 10 (-.-) breaks up before t ¼ 50. The gradual ramp-
ing (—) begins at Re ¼ 2;Ca ¼ 0:031, then to
Re ¼ 4;Ca ¼ 0:063 at t ¼ 20, to Re ¼ 6;Ca ¼ 0:094
at t ¼ 60, to Re ¼ 8;Ca ¼ 0:13 at t ¼ 117, and finally
to Re ¼ 10;Ca ¼ 0:15 at t ¼ 192. The latter shape set-
tles before t ¼ 300. The same final stationary state is
reached when the overshoot is avoided, whether through
gradual ramping of the shear rates (— in Fig. 6) or from
an initial state at rest (- - -).
4. Scaling

In Stokes flow, it is known that when the upper and
lower plates are moved to establish simple shear, there is
an instantaneous response over the entire domain. Below
the critical capillary number of approximately 0.43 for vis-
Fig. 5. Initial transients for half-length of the ellipsoidal x–z cross-section
L vs t. Re ¼ 2;Ca ¼ 0:031 (—); Re ¼ 10;Ca ¼ 0:15 (-.-.); in zero flow
followed by impulsively started walls (- - -).
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Fig. 6. Evolution to stationary state at Re ¼ 10;Ca ¼ 0:15 by ramping
up shear rate five times from Re ¼ 2;Ca ¼ 0:031 (—); evolution to
breakup for drop placed in established shear Re ¼ 10;Ca ¼ 0:15 (-.-.);
evolution to stationary state from zero flow followed by impulsively
started walls (- - -). t is dimensionless with respect to the shear rate at
Re ¼ 10.

Fig. 7. (a) Drop shapes for Fig. 6 at stationary states when the shear rate is
ramped up after the drop settles. The five shapes are Re ¼ 2;
Ca ¼ 0:031; t ¼ 20 (— in Fig. 6); Ca ¼ 0:0625;Re ¼ 4; t ¼ 60 (. . .);
Ca ¼ 0:094;Re ¼ 6; t ¼ 117 (—); Ca ¼ 0:126;Re ¼ 8; t ¼ 192 (. . .);
Re ¼ 10;Ca ¼ 0:15; t ¼ 300 (—). The same final shape is reached when
the drop and surrounding liquid are at rest, followed by impulsively started
walls (- - -, in Fig. 6). (b) Drop shapes for the case of initially established
simple shear at Re ¼ 10;Ca ¼ 0:15 (-.-. in Fig. 6) at t ¼ 20; 25; 30. The
drop eventually breaks.

1188 Y. Renardy / International Journal of Multiphase Flow 34 (2008) 1185–1189
cosity ratio 1 (Cristini et al., 2003), the drop elongates
monotonically to a steady shape. On the other hand, when
inertia is present, viscous effects take a time scale of OðReÞ
to propagate the motion of the walls into the interior and
reach the drop. This external shear drives the force which
deforms the drop and therefore, in the gentle startup sce-
nario, the drop takes a longer time to deform. On the other
hand, when the background shear is already present as an
initial condition, the drop is immediately forced to deform
by inertia, before capillary or viscous effects can act. The
drop responds with higher elongation. When this over-
shoot is sufficient to start the breakup process, then a ‘crit-
ical capillary number’ is attained. On the other hand, if the
overshoot is avoided through a gentle startup, the drop can
settle to a stationary state at an even higher capillary num-
ber. Thus, a critical curve is not unique.

Transient overshoots and oscillations occur naturally at
large Reynolds numbers. When inertia is important, larger
velocities are induced at the drop tips, tilting the drop
higher than in Stokes flow. This lift exposes the drop to lar-
ger speeds in the external flow, and a transient wobbling
takes place. Renardy and Cristini (2001a) find that close
to but just below the critical state, drop evolution at high
Reynolds number is described by a one-dimensional
damped mass-spring system

Re � Ca:x00ðtÞ þ Ca:x0ðtÞ þ xðtÞ � 0; ð1Þ

where xðtÞ denotes drop breadth. This yields a period of
oscillation proportional to ðRe � CaÞ1=2. The decay rate as
the drop approaches equilibrium is proportional to
�1=Re. Oscillations are also present for drops that break.
The examples in Section 3 illustrate these features for Rey-
nolds numbers as low as 10 at viscosity ratio 1 (Renardy
and Cristini, 2001a).

The effect of startup conditions is modeled next. Let
x ¼ L� a. The mass is of order qa3, the restoring force
is of order rx, and the viscous drag force is of order la _x.
The external force, if it is dominated by inertia, is of order
F ¼ qU 2a2, where U ¼ a_c is the velocity with which the
drop is sheared. This leads to the equation

qa3€x þ la _x þ rx ¼ qU 2a2: ð2Þ

The equilibrium deformation is

x ¼ qU 2a2=r:

The dimensionless deformation is

x=a ¼ qU 2a=r ¼ qUa
l

lU
r
¼ ReCa:

That is, the deformation of the drop, when an equilibrium
exists, is of order Re Ca. This scaling is verified for viscos-
ity ratio 1 with calculation of the critical curve for large Re

in Fig. 1 of Renardy and Cristini, 2001a.
If the drop is placed into a pre-existing shear flow, the

initial conditions are xð0Þ ¼ 0, and _xð0Þ is of order U. If
damping is small (high Re), these initial conditions will lead
to an overshoot. If, on the other hand, the wall is started up
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Fig. 8. The three cases in Fig. 6 are qualitatively modeled with (3) or (4).
x ¼ L=a� 1 vs t _c. _c ¼ 1, Re ¼ 10;Ca ¼ 0:15; tv ¼ 90, drop placed in
established shear (3) —; drop and outer liquid started from rest (4) - - -;
and drop placed in established shear (3) at Re ¼ 2;Ca ¼ 0:031, – – –.
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with the drop in place, the initial conditions are
xð0Þ ¼ _xð0Þ ¼ 0. Moreover, the force F is turned on grad-
ually. The time taken to establish the flow is determined by
the viscous diffusion time tv � qZ2=l, where Z is the dis-
tance of the drop from the wall. On the other hand, the
time scale for damping of the oscillating drop is of order
td � qa2=l. Since a � Z, the timescale over which the
external force is turned on is long compared to the time-
scale over which oscillations are damped. This eliminates
the overshoot. Moreover, if x is made dimensionless with
respect to a and t with _c, then (2) becomes

x00ðtÞ þ x0ðtÞ=Re þ xðtÞ=Re � Ca ¼ 1;

xð0Þ ¼ 0; x0ð0Þ ¼ 1; ð3Þ

for a drop in established shear, and

x00ðtÞ þ x0ðtÞ=Re þ xðtÞ=Re � Ca ¼ 1� e�t=tv ;

xð0Þ ¼ 0; x0ð0Þ ¼ 0; ð4Þ

for the flow starting from rest. Fig. 8 shows the qualitative
features of this model, applied to the three initial condi-
tions in Figs. 6. The drop placed in shear (—) at
Re ¼ 10;Ca ¼ 0:15; tv ¼ 90; x0ð0Þ ¼ 1; xð0Þ ¼ 0; xðtÞ
displays overshoots which qualitatively describe the break-
up in Fig. 6(b), while the one at Re ¼ 2 grows more slowly
to a much smaller amplitude (– – –) and qualitatively
agrees with Fig. 6(a). When the flow is initially at rest
ðxð0Þ ¼ 0; x0ð0Þ ¼ 0Þ, the forcing on the drop increases
during the initial tv period (- - -) and is analogous to
Fig. 6(c). This confirms the a priori scaling estimates on
the basis of the numerical simulations.
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